2,602 research outputs found

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure

    Clinical factors associated with a conservative gait pattern in older male veterans with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with diabetes and peripheral neuropathy are at higher risk for falls. People with diabetes sometimes adopt a more conservative gait pattern with decreased walking speed, widened base, and increased double support time. The purpose of this study was to use a multivariate approach to describe this conservative gait pattern.</p> <p>Methods</p> <p>Male veterans (mean age = 67 years; SD = 9.8; range 37–86) with diabetes (n = 152) participated in this study from July 2000 to May 2001 at the Veterans Affairs Medical Center, White River Junction, VT. Various demographic, clinical, static mobility, and plantar pressure measures were collected. Conservative gait pattern was defined by visual gait analysis as failure to demonstrate a heel-to-toe gait during the propulsive phase of gait.</p> <p>Results</p> <p>Patients with the conservative gait pattern had lower walking speed and decreased stride length compared to normal gait. (0.68 m/s v. 0.91 m/s, <it>p </it>< 0.001; 1.04 m v. 1.24 m, <it>p </it>< 0.001) Age, monofilament insensitivity, and Romberg's sign were significantly higher; and ankle dorsiflexion was significantly lower in the conservative gait pattern group. In the multivariate analysis, walking speed, age, ankle dorsiflexion, and callus were retained in the final model describing 36% of the variance. With the inclusion of ankle dorsiflexion in the model, monofilament insensitivity was no longer an independent predictor.</p> <p>Conclusion</p> <p>Our multivariate investigation of conservative gait in diabetes patients suggests that walking speed, advanced age, limited ankle dorsiflexion, and callus describe this condition more so than clinical measures of neuropathy.</p

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway

    Get PDF
    Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.ope

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    PP2A/B55 and Fcp1 regulate Greatwall and Ensa desphorylation during mitotic exit

    Get PDF
    Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, neither Fcp1 nor PP2A appear to essential to dephosphorylate the bulk of mitotic Cdk1 substrates following Cdk1 inhibition. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit

    Testing the proficiency to distinguish locations with elevated plantar pressure within and between professional groups of foot therapists

    Get PDF
    BACKGROUND: Identification of locations with elevated plantar pressures is important in daily foot care for patients with rheumatoid arthritis, metatarsalgia and diabetes. The purpose of the present study was to evaluate the proficiency of podiatrists, pedorthists and orthotists, to distinguish locations with elevated plantar pressure in patients with metatarsalgia. METHODS: Ten podiatrists, ten pedorthists and ten orthotists working in The Netherlands were asked to identify locations with excessively high plantar pressure in three patients with forefoot complaints. Therapists were instructed to examine the patients according to the methods used in their everyday clinical practice. Regions could be marked through hatching an illustration of a plantar aspect. A pressure sensitive platform was used to quantify the dynamic bare foot plantar pressures and was considered as 'Gold Standard' (GS). A pressure higher than 700 kPa was used as cut-off criterion for categorizing peak pressure into elevated or non-elevated pressure. This was done for both patient's feet and six separate forefoot regions: big toe and metatarsal one to five. Data were analysed by a mixed-model ANOVA and Generalizability Theory. RESULTS: The proportions elevated/non-elevated pressure regions, based on clinical ratings of the therapists, show important discrepancies with the criterion values obtained through quantitative plantar pressure measurement. In general, plantar pressures in the big toe region were underrated and those in the metatarsal regions were overrated. The estimated method agreement on clinical judgement of plantar pressures with the GS was below an acceptable level: i.e. all intraclass correlation coefficient's equal or smaller than .60. The inter-observer agreement for each discipline demonstrated worrisome results: all below .18. The estimated mutual agreements showed that there was virtually no mutual agreement between the professional groups studied. CONCLUSION: Identification of elevated plantar pressure through clinical evaluation is difficult, insufficient and may be potentially harmful. The process of clinical plantar pressure screening has to be re-evaluated. The results of this study point towards the merit of quantitative plantar pressure measurement for clinical practice

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
    • …
    corecore